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Summary of Research Activities 

The research activities are  divided into three stages, with each stage lasting 
approximately one month. In the first stage ', we discussed the design trade-off for real- 
time SAR processing. The objectives are to maximize the processing density 
(MFLOPS/volume, MFLOPVweight, MFLOPS/watt), to minimize the hardware cost 
(MFLOPS/dollar), to minimize the software development cost, and to maximize software 
generality. As an example, we briefly described the Mercury's RACEway 
multicomputer as a low cost, high-performance, embedded heterogeneous message- 
passing multicomputer system. 

In  the  second stage 2, we  presented a procedure to divide the SAR signal processing 
into pipelined parallel steps that can be  performed on a parallel computer. We also 
estimated the throughput, memory,  and 1/0 bandwidth requirements using the NASA/JPL 
GeoSAR system. Using again the Mercury's RACEway multicomputer as an example, 
we  showed how to configure the hardware for SAR signal processing. 

Parallel  programming  was the topic in this final stage '. First, we  gave an overview 
of the standard multicomputing platforms and parallel programming models. We then 
compared and contrasted "scientific" versus "real-time" processing/programming. Next, 
we  showed the hardwarehofiware co-design approach for SAR signal processing. Then, 
we  discussed the current issues in parallel programming. Finally, we described a typical 
software architecture for parallel programming of SAR signal processing. 
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Part I: The Design Trade-off for  Real-Time SAR Processing 

1. Introduction to Parallel Processing 

Multiprocessing is necessary  to  meet the real-time  demands,  and/or  high  I/O data rate, 
and/or  computationally  intensive  algorithms,  typically  found in radar/sonar systems. 
The  four  key  issues in large  multiprocessor  systems  are  architecture,  communication 
efficiency,  reliability,  and ease of  use '. Usually,  parallel architectures are  characterized 
by two  general  classes:  shared-memory  multiprocessors  and  message-passing 
multicomputers '. The main  differences lie in the implementation  of memory sharing 
and  interprocessor  communication.  In a shared-memory  multiprocessor configuration, 
all processors  within the system  have  equal access to a shared-memory address space. 
The  interprocessor  communication is achieved by modifying data in the shared-memory 
address space. On the other hand, in the message-passing  multicomputer  architecture, 
each  compute  node  (CN) consists of a processor  and its own  local  memory,  unshared 
with  all  other  CN's.  CN's  are  connected  with  each  other via a common high-speed data 
communication  fabric or interconnection  network. Processors communicate  with  each 
other by passing  messages  through this interconnection  network. 

2. A Typical Example: The Mercury's RACEway  Multicomputer 

In recent years, Mercury  Computer  Systems,  Inc.  (MCSI)  has  emerged as one of the 
leaders  in the development  and  manufacturing of lower cost, high-performance, 
embedded  heterogeneous  message-passing  multicomputer systems. These  parallel 
systems  address  complex  real-time  applications  requiring  tremendous  computational 
throughputs  (such as radadsonar processing,  medical  imaging, etc.). Its main 
competitors  include,  but  not  limited to, Alacron,  CSPI,  and  Sky  Computers '. However, 
MCSI's  hardware systems dominate  the radarhonar market in both military I g 9 a n d  
commercial l o  sectors. MCSI's  RACE  multicomputer  provides a foundation for 
parallel  systems  and offers a set of  building  blocks that provide  upward  scalability . 
An  example  of  high-level  heterogeneous  RACE  multicomputer is  shown in Fig. 1. The 
system consists of programmable  digital  signal  processors  (DSPs), such as the Analog 
Devices' SHARC chips; general-purpose  reduced-instruction-set-computing (FUSC) 
microprocessors,  such as the Intel's i860, Motorola/IBMs PowerPC; application- 
specific-integrated-circuit  devices,  such as Xilinx's field-programmable-gated-array 
(FPGA) XC4000 series; I/O ports; and a network interface all  connected via the 
RACEway  interconnection  network. The RACEway  interconnection  network is the 
framework  used  to  provide  high-performance  communications among the interconnected 
processors  and  devices.  Each  node in the multicomputer interfaces the network  through 
the RACE  network chip (see Fig. 2). The  network chip is the key to the high 
performance  and low cost of the RACE system. The  network chip is a crossbar  with 6 
I/O channels consisting of 32 bit  datapaths,  and 8 bits of control  and  clocking.  Each 
channel is bi-directional. This device  can  handle three simultaneous transfers of 160 
MB/s for a total of 489  MB/s,  and  can  broadcast  to 5 ports at 640  MB/s. The RACE 
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network can be configured into a wide variety of network topologies; however, the most 
common configuration is a fat-tree architecture 13. 

RACEway  Interconnection  Network 

RISC I/O Network Memory 
- DSP , Interface 
- 

VME Bus 

I 

PC1 Bus 

Figure 1: The RACE Multicomputer l3 

I RACEway  Chip 

c o  c1 c2 c3 

Parent Ports 

Child  Ports 

Figure 2: The RACE network chip l3  
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3. Optimization Criteria for High-Performance Embedded Real-Time Systems 

As stated in Section 1, the four principal design criteria are 

0 Maximizing processing  density (MFLOPS/volume, MFLOPS/weight, and 

0 Minimizing hardware cost. 
Minimizing software development cost (ease of programming). 

0 Maximizing  generality  (easy reconfigurability and software portability). 

MFLOPS/watt). 

These conditions are usually  in conflict with each other, and thus cannot be all met at the 
same time. The system developer has to weigh each condition differently during the 
course of his development process. The following subsections will discuss the design 
trade-off  imposed by these criteria. 

3. I .  Processing Density 

No matter how fast a single processor is, typical radar/sonar systems need 
multiple processors working together to satisfy the throughput requirements. If the 
computing unit is carried  in a limited enclosure (such as aircraft or spacecraft), or  the 
application has an embedded nature, the processing density is an important consideration. 

Usually, DSPs are the processors of choice for embedded vector or image 
processing-oriented applications (such as FFT, FIR filters, IIR filters, multirate filters, 
adaptive filters, pulse compression filters, etc.), where high processing density (i.e. 
MFLOPS/m3, MFLOPS/watt) is a primary consideration, or for other similar algorithms 
that have a high data-to-computation ratio 1 5 .  In general, the processing density of DSPs 
is usually 5 to 10 times that of general-purpose microprocessors. For example, up to 12 
SHARCs can be mounted on one 6U VME  board as compared to only 4 i860s or 4 
PowerPCs. On the  other  hand,  RISC processors are suitable for high-performance scalar 
processing applications that involve the execution of compiled C/FORTRAN codes with 
low data-to-computation ratio. Also, RISC processors are more applicable where ease- 
of-use is an important consideration. And finally, application-specific-integrated-circuits 
(ASIC) devices (such as FFT, data compression, or reconfigurable processors) can offer 
an  order of magnitude throughput improvement for a specific algorithm compared to 
programmable processors. 

Hence, heterogeneous multicomputing, where  more than one kind of processor 
type are used, is preferred to optimally match different types of chips to different 
computation stages of the application. A heterogeneous configuration that can leverage 
DSPs, RISC microprocessors, and specialized processors optimizes the dataflow 
throughput and leads to fewer overall processors. Smaller systems are not only less 
expensive  because  they  have  fewer processors, but they also requires less hardware 
infrastructure since they are easier to package, power, cool, and maintain. Optimal 
configuration of a heterogeneous multicomputing system  for minimum SWAP is the 
main subject of  the  second stage of  the research project. 
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3.2. Hardware Cost 

Driven by profit, business decision places strong emphasis on this criterion. 
However,  it is less important during the development stage or in situation where large 
production volume is not an issue. In a typical research establishment, system reliability 
may  be more relevant. Thus, the optimal system with respect to hardware cost depends 
only on the budget for a specific project. Fortunately, use of COTS-based components 
(almost) always ensure parts availability in a competitive market. Also, with a 
heterogeneous system, system cost can  be substantially reduced  by matching the 
processor type to the processing requirement. 

3.3. Sofhvare Cost 

This is the  most important design criterion when developing a prototype or proof- 
of-concept system. In these situations, the applications require only one working 
prototype and a spare copy of such system. Most  of the time will be spent on software 
developing. Minimizing software cost leads to choosing the processors that are easy to 
program,  or have strong third-party support 16, or  benefited  from academia and federally 
funded research 17 .  

In the past, general-purpose microprocessors were the easiest to program  due to 
their available high-level language (such as FORTRAN or C) compiler. Programming 
DSPs, on the  other hand, was much harder,  primarily through libraries and excruciatingly 
tailored hand code. However, progress in the compiler and architecture has made it 
possible for the DSP's applications to be written in a high-level language, and to allow 
the compiler to do the fine-grain scheduling necessary to achieve available instruction 
level parallelism l 8  19. All  of the currently popular DSPs possess at least a C compiler 
provided by their manufacturer. And  most  of DSP board vendors often include third- 
party  high-level language compiler and real-time-operating-system (RTOS) for their 
boards. 

If the application calls for a heterogeneous architecture, then interprocessor 
communication becomes important. Here, an open software infrastructure is necessary to 
enable seamless integration of different processor types, operating systems, and 
application programming interfaces, allowing rapid response to new technologies and 
application-specific software requirements. Development tools such as debuggers and 
application building tools are also of importance. 

3.4. System Generality 

System generality  refers to the openness of the hardware architecture, and the 
ease with which different applications can be implemented on a given multicomputer. 
Open hardware architecture reduces life-cycle costs by providing a standard platform for 
future upgrades. Open and standard interfaces permit third-parties and end-users to add 
their  new and unique I/O and specialized processing elements for a wide range of 
application requirements. COTS-based open-architecture multicomper systems can 
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rapidly adapt and evolve to new technology and requirements. The marketplace will 
provide the best technology available on an open (and standard) system, thus extending 
the useful life cycle of the systems for many years. 

As already discussed in Section 4.3, an open software architecture is also 
preferred so that software modifications or upgrades can be easily ported to a given 
hardware system. 

4. Summary 

In this first part, we have presented  and discussed the design trade-off one must face 
when designing a  real-time computing platform for SAR signal processing. Past 
approach centered on choosing "the right processor". Advanced technology made it 
possible for open heterogeneous COTS-based multicomputing systems that allow several 
types of processors to work  in parallel. The main idea is to optimally match each type of 
processors to the computation stages where it can provide the best throughput. Coupled 
with an open software infrastructure, these systems offer significant advantages and 
reduce overall system cost. 
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Part 11: Pipelined  Parallel  Architecture for SAR Processor 

1. Introduction 

In this part, we present a procedure to divide the SAR signal processing into pipelined 
parallel steps that can be  performed  on a parallel computer. We also estimate the 
through ut, memory,  and I/O bandwidth requirements using the NASNJPL GeoSAR 
system . Using  again the Mercury's  RACEway multicomputer l 4  as an example, 
we show how to configure the hardware for SAR signal processing. 

Yo 21 22 

SAR is a radar  imaging technique aiming at providing two-dimensional high-quality 
high-resolution images for terrain mapping at target imaging. Applications of SAR in the 
military consist of intelligent gathering, battle field reconnaissance, land mine detection, 
and  weapon guidance. Civilian applications include topographic mapping, surface 
deformation monitoring and analysis, oil spill monitoring, ocean and sea ice 
characterization and tracking, agriculture and  urban classification and assessment, land 
use monitoring, planetary exploration, etc. 

One of the many challenges in SAR is the huge amount of computations required in 
several  SAR correlation algorithms, such as the range-Doppler algorithm, step-transform 
processing, deramp compression processing, polar processing, a-k algorithm, etc. . 
This reference also gives an overview of many  SAR correlation architectures that have 
been considered or implemented in the past. One should however note that these 
hardware platforms have been designed in the mid- or late eighties. Since then, dramatic 
advances in VLSI technology have made possible the stringent requirements that seemed 
insurmountable only ten years ago. Also, substantial investment in advanced 
reconnaissance technology from the Department of Defense (DoD) and the Defense 
Advanced Research Projects Agency (DARPA) through such ro rams as COTS 
and  RASSP 1 7 ,  have  led to many  radar processing systems 7, 1 1 ,  p2, ''> 27 &at provide high- 
performance, while offering small size, light weight, and low cost for expendable aircraft 
mission 9, 28. It is our intention, in this research project, to benefit from these previous 
investments and to consider the resulting advanced technology for civilian use, such as in 
the GeoSAR  program 

23 

24, 25 

2. General Description of SAR Signal Processing 

GeoSAR 21 is a congressionally-mandated DARPA-funded project to develop a dual 
frequency airborne interferometric mapping radar. The overall goals of the project are to 

0 develop precision foliage penetration mapping technology based upon dual 

provide military and civilian users with significant increase in mapping 

0 produce true ground surface digital elevation models suitable for military and 

frequency interferometric radar 

technology 

civilian applications 
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The  project duration is 3 years, starting November 1, 1996. The system is expected to be 
operational  in November 1999. Table 1 gives the definitions and values of the radar 
parameters and Table 2 shows the processor parameters. 

Table 1: Radar parameters 

Table 2: Processor parameters 

Figure 1 shows the block diagram of the  GeoSAR  range-Doppler signal processing and 
Figure 2 gives the numbers of floating-point operations per input sample at each 
processing stage 
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Figure 1: SAR signal processing 
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3. Parallel of SAR Signal Processing 

Ma 

T 1 

As shown in Figs. 1 and 2, the range-Doppler SAR algorithm can be separated into 
sequential stages. Hence, the processing can be pipelined to improve the throughput. In 
addition, multiprocessors can be  employed in each stage to obtain a further throughput 
increase. Fig. 3 shows a possible parallel mechanism for SAR processing. 

1 b Ns 

range samples 

1 . M, 

pulse number 

Ranpe  Processing Azimuth Processing 

Figure 3: Parallelization of SAR Processing 

The  range compression can be  performed independently of the pulse number. In this first 
stage of  the pipeline chain, multiple processors (PI, P2, . .. , P,) can work in parallel to 
perform the range compression, with each processor responsible for a set of pulse returns. 
Similarly, the azimuth compression of different range samples can be performed 
independently  of the range cells. Hence, another set of multiple processors (PI, P2, . . ., 
P,), distributed across the range samples, could  be  assigned to work in parallel. Between 
the  two compressions in  the  range  and cross-range directions, data needs to be "corner- 
turned". In this intermediate step, data are transferred from range buffer  memory to 
azimuth buffer  memory,  and then (matrix) transposed. 
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4. Processing Requirement 

4.1. Throughput and Memory Trade-Oflfor Overlap-Save Convolution 

Because  of the long data record, the convolutiodcorrelation operations are best 
performed  with the overlap-save technique. Given the chirp reference length M,, there 
exists an optimum FFT section length P, to minimize the FFT computational load. 

FLOPS  per Input Sample for M, =7200 
I I 

\ 
\ 

I 

I I 

5 10 If 
Section Length Relative to M, (Pfl,) 

Figure 3: FFT computation load as function of section length 

Figure 3 shows the  FLOP  per input sample as a function of the section length P, for the 
FFT operation. Since the minimum region is very flat, it is better to choose the smallest 
section length P, in this region to minimize the amount of memory buffer required. This 
is  very important for azimuth processing  when it is shown that the azimuth memory 
buffer dominates the total system  required memory. 

4.2. Total Computational Load 

The computational load at each stage is the number  of  FLOP required for that stage 
multiplied by  the corresponding sample rate. The SAR signal processing can be  divided 
into three main stages: range compression, presumming and motion compensation, and 
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corner turn and azimuth compression. The sample rate during the range compression step 
is given by 

After pulse compression, there are only N, good samples. Hence, the sample rate for the 
subsequent computations is 

The computational loads for the three stages are 

Caz =QrVG[ l l io ( l0 log2   Nu   +6+611)+13  
N s  Pa 1 

We recall  from Tabs. 1 and 2 that, except for P, which is the software parameter all the 
remaining parameters in the above equations are actual radar parameters, fixed at the 
radar system design level. As discussed in the previous section, P, is the parameter that 
controls the trade-off between throughput and memory requirements. Since the lengths 
of the range and azimuth reference functions are long for GeoSAR system (in the order of 
8K to 16K), a 50% overlap in the overlap-save convolution operation (corresponding to 
P, = M, and P, = Ma) is chosen to minimize the amount of memory required. 

The  number  of samples per pulse N, and the radar PWfP are inversely proportional to the 
range resolution &, and the azimuth resolution &,, respectively 

where gr and g, are the range and azimuth oversampling factors, respectively. Hence, the 
processing load, in general, increases inversely  with the square of the image resolution. 
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4.3. Memory Requirements 

Each range compression processing element (PE) requires both an input and output 
double buffer, each of length 2Ns complex samples. If there are P, range processors, then 
the total range  memory required is 4P,.Ns complex samples. Azimuth processing requires 
a corner-turning double buffer in addition to the output image buffer for a total of 
(2+1)N,.,,Mu = 3 N,.,,Ma. Since the azimuth reference length Mu is on the order of 1,000 
(X-band) to 20,000 (P-band), and the number of range processors is much smaller (in the 
order of 10 to loo), the total memory requirement are dominated by the azimuth 
processing. Assuming 8 bytes per complex sample, the total memory required is 

Since 

the total memory  required is inversely proportional to the cube of the resolution. 

5. Mapping SAR Signal Processing into a COTS-Based Parallel Computer:  An 
Example with GeoSAR using Mercury's SHARC DSP Daughter  Cards 

Mapping a signal processing application into a COTS-based computer consists of 
determining the total throughput (GFLOPS), the number of processors, the amount of 
memory (MB), and inter-processor data communication bandwidth (MB). 

6.1. Total Throughput and Number of Processors Required 

For the GeoSAR  radar and processor parameters given in Figures 1 and 2, the 
throughputs measured  in  GFLOPS  (number  of giga floating-point operations per second) 
are shown in Table 3 

Range 
Throughput Compression Mocomp Compression 

Total Azimuth P r e s d  

X-band 
3.12 1.07  0.25 1.8 P-band 
2.91 0.86 0.25 1.8 

Table 3: GeoSAR signal processing throughput 
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The total throughput gives only an estimate of the total computations required for 
the application. However,  not all FLOPS are created equal. This means that a given 
processor performs some operations faster than other operations. For example, Table 4 
shows the throughput of a DSP  board consisting of Analog Devices' SHARC chips, for 
the operations relevant to SAR signal processing 28 

Operation Throughput (MFLOPS) 
Magnitude Squared 

Fixed-to-Float / Float-to-Fixed 
45 FIR  Filter 
27 Complex Multiplication 
26 

94 Fast Convolution 
80 Corner Turn 
80 

Table 4: Equivalent  FLOPS for SHARC-based DSP 

To determine the number of PES required, we  need to 
1. determine the equivalent throughput of the selected PE type (SHARC, 

TMS320Cx, PowerPC, i860, ...) for each operation, i.e.  the processor's 
benchmark. 

2. determine the  FLOPS  required for each operation in the pipelined processing. 
3. divide step 2. by step 1.  to get the number  of  PE required for each operation. 
4. add  the results of step 3. to get the total number of PE required. 

Tables 5 and 6 show the procedure highlighted above for the GeoSAR X-band  and  P- 
band radars, respectively. The main difference between the two systems, for processing 
purposes, lies in the different azimuth reference lengths due to different radar center 
frequencies. A processing margin of 30% has been assumed for other unaccounted 
calculations. We note from these two tables that the range compression requires more 
processing elements than the azimuth Compression, which also includes the corner-turn 
operation. 

6.2. Memory Requirement 

The  memory requirements for the range and azimuth processors are shown in Table 7. 
The required memory for range compression is quite modest compared to the azimuth 
compression. A 50% saving in azimuth memory can be obtained if one stores the range 
compressed data in a fixed-point format  at the expenses of dynamic range29 and 
throughput, since data needs to be converted back to floating-point format after corner- 
turned for subsequent azimuth processing. 

6.3. 1/0 Bandwidth Requirement 

Assuming 8 bytes  per complex sample, the total I/O bandwidth rate in the pipeline chain 
(range compression, corner turn, and azimuth compression) is  just 8 4 .  The 110 
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- 
(GFLOPS) (MFLOPS) - PES 

Range Processing 
Fast Convolution 

0.24 Presum+MocomP 
94 19.15 1.8 
27 8.99 

Operations I FLOPS required I SHARC 

Add 

Total PE, required 
8.44 +30%overhead 

28.14 2.04 

37 

Azimuth Processing 
Corner Turn 0.025 80 0.32 
Range Migration 

0.29 26 0.008 Magnitude 
6.24 94 0.59 Fast Convolution 
8.99 27 0.24 

Add 0.86 15.84 
+ 30 YO overhead 

21 Total PE,, required 
4.75 

Table 5: Number of processing elements (PES) for X-band  GeoSAR 

Operations 

I Fast Convolution 
Presum+Mocomp 

I Add 

c Corner Turn 
Range Migration 
Fast Convolution 
Magnitude 

Table 6: Number of processing elements (PES) for P-band  GeoSAR 
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Formula 

0.64 MB 0.64 MB 32 N, Per  Processor 
18 MB 18 MB  32 N, PE, Total 

Range Processing 
P-band X-band 

Azimuth Processing 
Total 4955  MB 310  MB 24 N,M, 

I I I 

Per  Processor I 24 N,.,,M,/ PE, I 20 MB 275 MB 
. . .. 

Table 7: Memory requirements 

bandwidth  per processor is twice (input + output) the total I/O rate divided by the number 
of processing elements in each pipeline stage. Table 8 shows the results. These I/O 
requirements are well below today's advanced  VME/PCI  buses that can sustain data rate 
well above 160 MB/s 9, 30. 

Formula I/O Bandwidth (MB/s) 
Total 

2.4 16Q / PE, Per  Azimuth  Processor 
1.4 164 / PE, Per  Range  Processor 
51 8Q 

Table 8: I/O bandwidth requirement 

6. Approach for Optimal Hardware Configuration 

The  range compression is characterized by a low memory-to-processor ratio (1 8 MB 
divided  by  37  PE,) whereas the azimuth compression has a very high memory-to- 
processor  ratio (3 10 -- 4955  MB  divided  by 24 PE,). A custom-designed DSP board can 
produce  any  desired memory-to-processor ratio. However, this approach is time- 
consuming and fairly expensive. Also, custom-built board is not flexible in the sense that 
it is designed for specific requirements. If  any  of these requirements changes in future 
time (i.e. frequency, bandwidth, pulse width, swath width, flying altitude, etc.) leading to 
new memory-to-processor requirements, new boards need to be fabricated. Or the whole 
processing system may  become inefficient, and even obsolete. These drawbacks lead to 
more frequent use of COTS-based products (i.e. commercially available in a competitive 
market), that contain a wide  range  of  memory-to-processor ratios. The optimal hardware 
configuration consists of choosing the optimal mix of these COTS-based DSP boards to 

' meet  the throughput and memory requirements, and at the same time satisfying the 
maximum size, weight, and power  (SWAP) constraints. As discussed in the first report, 
the  host  system  must  be  standard  and  open to ensure easy insertion and rapid prototyping 
of  hardware  and software components. Only in this case, can hardware configuration 
using  COTS-based components make sense and deliver the optimum solution. 

1s 



6.1, Choice of Objective Function 

In airborne and spaceborn missions, all SWAP constraints are important. For 
computation processing  purposes,  the power requirement is the most important 
parameter. The weight of a computer system is determined by the custom-built chassis. 
The size of the system depends on the processing density of the processing elements and 
on  the  geometry  by which they are arranged. However, power consumption is by far the 
fundamental variable to be minimized. 

6.2. Mercury's COTS -Bused Daughter Curds 

To quantify the hardware design, we consider as examples the following specifications 
for four  Mercury  Computer's  SHARC daughter cards 31.  Each daughtercard has six 
SHARC processors with two  independent compute nodes (CN) of three processors each. 
Each  CN on the daughtercard has 8, 16, 32 or 64 MB of DRAM that is shared  by both 
CN's processors. 

S2T8B-D S2T64B-D S2T32B-D  S2T16B-D 
Configurations: 
Compute Nodes (CNs) 2 2  2  2 

Data Transfer Rates: 
DRAM (MB/s) 320 

Specifications: 
ElectricaYMechanical 

53.3 53.3 53.3 53.3 Per SHARC, average (MB/s) 
320 320 320 320 SHARC buses, shared (MB/s) 
320 320 320 

Power (watts) 14 14 14 14 
Weight (pounds) .4 .4 

5" x 4.435" 5" x 4.435" 5" x 4.435" 5" x 4.435" Dimensions 
.4 .4 

Table 9: Mercury% SHARC daughtercard specifications. 
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6.3. Choices of Hardware  Configuration 

There are three possible hardware configurations. In the first choice, only one type of 
daughtercards is chosen so that the available processors and memory are shared  by  both 
range and azimuth processing. From Tables 5 and 6 ,  the number of range processors is 
about twice that of azimuth processors. Since each CN has three SHARCs, one SHARC 
can be  assigned to the range processing while the remaining two perform the azimuth 
processing. For the X-band system, the 64 MB  of  memory on the S2T64B-D (21.3 MB 
per SHARC) satisfy the total memory required for these three range and azimuth 
processors. However, none of these cards meets the very high memory-to-processor 
requirement (85 MB  per processor) for the P-band radar. In this case, some remote 
memory access is required, thus raising the throughput and power consumption. 

Since the memory-to-processor requirements are different for the range and 
azimuth processors, it is possible to assign two different card types to each of the range 
and azimuth processing. The range (or azimuth) processing will have all the available 
SHARC processors (3) and  memory on each CN for its own use. 

Lastly, in situation where there is a large disproportion between the numbers of 
range and azimuth processors, we can combine the two previous approaches. The 'first 
set  of CNs is shared  between the range and azimuth processing. The remaining set is 
exclusively devoted to the processing stage that requires more processors. 

The last step is to find the total power consumption as a function of the type and 
number  of daughtercards used in the configuration. This power consumption is also a 
function of any software parameter in the SAR signal processing (for example, the FFT 
section lengths). The objective is to minimize this power consumption subject to the 
number  of processors and  memory required. 

In summary, the time-consuming and expensive problem of custom-designed board is 
reduced to simple optimization calculation. The availability of different DSP boards in a 
competitive market leads to great  system flexibility. Use of  COTS-based components 
would ensure that these objectives could  be  met successfully. 

7. Summary 

In this second  we have shown the steps in designing a COTS-based parallel computer for 
real-time SAR signal processing. Using the NASNJPL-developed GeoSAR system as an 
example and the Mercury Computer System's SHARC daughtercards as a typical 
hardware platform, we  have  provided the calculations of  the resource requirements 
(number  of processors and memory),  and different choices of hardware configuration for 
minimum power. 
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Part 111: Parallel  Programming Issues 

1. Introduction 

Parallel  programming  is the topic in this third and final part. First, we give an 
overview of the standard multicomputing platforms and parallel programming models. 
Then,  we compare and contrast "scientific1' versus "real-time" processing/programming. 
Next, we show the hardware/software co-design approach for SAR signal processing. 
Then,  we discuss the current issues in parallel programming. Finally, we describe a 
typical software architecture for parallel programming of SAR signal processing. 

2. Review of Standard Multicomputing Platforms 

Scalable parallel computer systems are classified into five general models 32 as shown in 
Figure 1 : the parallel vector processors (PVPs), the symmetric multiprocessors (SMPs), 
the massively parallel  processors (MPPs), the distributed shared-memory 
multiprocessors (DSMs), and the cluster of workstations (COWS). The important 
characteristics of these systems consist of: 

Commodity components: using commercial-off-the-shelf (COTS) microprocessors, 
memory, disks, and software. 
Multiple-instruction-multiple-data (MIMD) architecture: the application program is 
divided into processes, each running a possibly different subprogram on different 
processor. 
Asynchrony: each process executes at its own pace. Synchronization is maintained 
through the  use  of semaphores, barriers, sockets, threads, blocking-mode 
communications, etc. 
Distributed memory:  memory is physically distributed among different compute 
nodes (CNS), either shared  or unshared. Memory access is carried out using uniform- 
memory-access (UMA) or non-uniform-memory-access (NUMA) models. Because 
of its centralized shared memory, the  UMA  model  may limit scalability once built. 

Table 1 compares the architectural attributes and performance of these five parallel 
architectures. 
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I Attribute 1 PVP I SMP  DSM  MPP cow 

Example 
systems 

Typical 
Usage 

Processor type 

Memory  model 

Address mace 
Access  model 

Interconnect 

Scalability 
Performance/ 
Cost  Ratio 

system 

Custom COTS COTS 
vector- Microprocessor  Microprocessor 
processor 
Centralize Centralized Distributed 
shared shared  shared 
Single Single Single 
UMA  UMA NUMA 
Custom Bus or Custom 
crossbar crossbar network 

Medium 
Low Low High High High 

High 

Table 1: Architectural attributes of  MIMD parallel computers 

3. Review of Standard Parallel Programming  Models 

Table 2 lists the four parallel programming models: implicit, data parallel, message- 
passing, and shared-variable models 33. Implicit model lets the compiler and the run- 
time support system exploit the  program parallelism. The remaining three programming 
models are explicit models  where the user explicitly specifies in the source code the 
program parallelism. This can be  achieved  by  using three realization approaches: library 
subroutines (additional library to support parallelism and interaction operations), new 
constructs (the programming language is extended with new constructs to support 
parallelism and interaction), and compiler directives (formatted comments to help the 
compiler in optimization and parallelization). The table also shows existing software 
products together with the targeted hardware platforms. The remaining entries focus on 
various parallel programming issues (****: most favorable, *: weakest). Parallelism 
issues concern process creatiodtermination, context switching, number of processes. 
Interaction issues involve data and workload allocation, and processor synchronization 
and communication. Semantic issues affect termination, determinacy, and correctness 
properties. And programmability issues refers to code efficiency and portability. 
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Platform Independent Examples 

Forge I I Fortran 200 1 MPI, MPI-2 POSIX Threads 

PC++. Nesl 
HPF,  HPF-2 OpenMP 

A I I 

Platform Dependent Examples Convex CM C*  IBM SP2, Cray MPP, 
Exemdar Intel Paragon SGI Power C 

Table 2: Comparison of four parallel programming models 33. 

Table 3 further classifies the explicit programming models based on their architectures 
and  working principles. Further information can be found in the references . 32,33 

Feature 
P 

Control Flow 
(threading) 

Synchrony 

Address Space 
Interaction 

Data Allocation 

H Data Parallel Message Passing Shared Variable I 
]/Single 1 Multiple I Multiple 

Loosely 
synchronous 
Single 

Implicit or 
Explicit Explicit Implicit 
Multiple Multiple 

Explicit 
Semi-explicit Semi-explicit 

Asynchronous Asynchronous 

Implicit or 

Table 3: Main features of explicit parallel programming models 33. 

4. Comparison between "Scientific" and Real-Time'' Computing 

Traditional supercomputers (PVP, SMP, MPP) with general-purpose computinf design 
philosophy  have  served  well the scientific and business computing markets . In 
contrast, embedded systems are often found in real-time, sensor-based, signal and  image 
processing applications. The fundamental characteristics separating the two applications 

3 , 35 
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are:  application flow, deterministic requirements,  support  for  heterogeneity,  and  hardware 
utilization  requirements 34. 

In scientific applications data  are  given just once as an initial value  problem  and 
evolve  according  to  a scientific model.  Each  evolution  step involves different  and 
complicate  operations  and is subjective to change  with  respect  to the previous steps, 
depending  on the data runtime  value. 

In  real-time,  sensor-based applications, the execution  process is divided into two 
phases: SETUP and GO phases.  During the SETUP  phase, the software  performs 
functions  with  high  level of latency  and  low  level of determinism, such as shared 
memory  creation,  processors  hiring,  task  partitioning  and scheduling, initialization of 
parallel libraries, and  establishing  of  processor communicatiodsynchronization. Thanks 
to  the  regularity  of the processing  during the GO phase, this SETUP procedure is 
performed  only once and the entire  subsequent  processing  can  be  completely  planned 
ahead.  That  is, the processing  regularity permits static task  mapping  and  scheduling (i.e. 
task  mapping  and  scheduling are determined at compile  time). This is in contrast to 
scientific programming  where  dynamic  task  profiling  and  scheduling are required. 

The  software  then  gives  way in the GO phase  where  the  hardware takes over  and 
manages the data movement and  transformation.  During this time, the sensor 
continuously  delivers data, probably  at  a  high rate, to  be  processed.  However, the 
processing is relatively  simple  (FFT, filtering, etc.), repetitive,  and  predictable.  That is, 
data value  do  not dictate what the application  should do, as with scientific application 
that decides which  conditional  branch  to  process  based on data values in the previous 
steps.  Thus  real-time  sensor-based  applications  require quick and deterministic 
performance.  What  separate  real-time  programming  from scientific programming  are 
high  data  refreshing  rate, its passive  nature,  and the processing regularity. 

As mentioned  previously,  real-time  applications require uninterrupted data collection 
and  continuously  concurrent  processing of data.  These  requirements lead to  high  demand 
for deterministic control,  high-speed  processing,  and  efficient  communication  and 
synchronization  mechanism. In addition,  real-time  embedded systems require extremely 
high  hardware  utilization  (optimal  use of resource) in terms of  performance (MFLOPS) 
per  cubic foot, per  pound,  per  watt,  and  per dollar. This implies  maximal hardware fine 
tuning  and  minimal  software  overhead.  Thus,  both  hardware  and software latencies must 
not  only  be  low,  but also deterministic in order to keep  up with the continuous data 
stream. 

To  meet the high  hardware  utilization,  embedded  real-time applications are best 
served by a  heterogeneous mix of processors 36. For  example, custom processors  can be 
used  for  low  latency I/O interfaces and FFT calculations. DSP chips are  ideal for vector 
tasks,  such as digital filtering, image  formation, data reconstruction  and  resampling,  and 
signal classification. And FUSC can be employed  to  perform  scalar task, such as feature 
extraction, inverse  problem,  parameter retrieval, image classification and interpretation, 
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large scale (global) surveying and understanding, target detection, and decision making 
processes. 

In general, there are three types of heterogeneous computing (HC) models: mixed- 
machine  model,  mixed-mode  model, and mixed-component model 37. In a  mixed- 
machine system, a heterogeneous mix of independent machines of different types are 
interconnected by a high-speed network (e.g. crossbar switch, SCI, HiPPI, Myrinet, fiber 
channel, gigabit Ethernet, etc. 33). A mixed-mode system has a single parallel machine 
whose processors are capable of operating in either the synchronous SIMD or 
asynchronous MIMD mode, and can dynamically switch between these two modes. A 
mixed-component  system consists of a machine with different components where each 
represents one  mode of parallelism. 

5. Heterogeneous Multicomputing for SAR Real-time Processing 

SAR signal processing (filtering, image formation, detection, classification, etc.) usually 
involves different types of computation (vector and scalar processing) ’. Consequently 
the correspondin signal processing architecture is best  served with a mix of computing 
technologies 361 Homogeneous machines, where only one type of microprocessor is 
employed, cannot achieve their peak performance during the entire process. This is due 
the fact that different algorithms within the SAR signal processing have different 
computational requirements. And currently there is  no single microprocessor architecture 
that can serve all computational requirements equally well 3 6 e  To meet the high 
throughput and low latency requirements, real-time SAR signal processing calls for 
heterogeneous platform where  each processor is tailored to match with the type of 
computation for which it was designed 

8 

38,39,40,41 

Figure 2 shows the software domain (computational model)  and hardware domain 
(hardware realization) for real-time SAR signal processing using a heterogeneous 
multicomputing platform. The  actual parallel implementation is a parallel pipelined 
system  where each pipeline is a collection of tasks and each task itself is parallelized. 
This helps in improving throughput and latency, whose definition and discussion will  be 
given  in the subsequent sections. 

In  the first stage, the sensors deliver analog data to be digitized by the I/O device (e.g. 
A/D converter). The digital data are then compressed (filtered, convolved, etc.) to form 
image. While this stage is  highly computationally intensive, the processing can be 
separated (pipelined) into well-defined vector subtasks (range compression, corner 
turning, azimuth compression, etc.) where multiple processors can be employed in 
parallel. Also, these filtering operations are very regular, repetitive, and require 
minimum software conditional branches. Hence, DSP chips are best suited for this 
second stage. The third stage consists of image segmentation and feature extraction. 
This stage is characterized by mixed vector and scalar operations, which can be 
effectively performed with multiple microprocessor units running in parallel. The next 
stage involves data interpretation and decision making. The processing is highly scalar in 
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Figure 2: S A R  signal  processing on heterogeneous  multicomputing  platform. 

nature, requiring complex software programming,  and utilizing mostly  conditionals, table 
look-ups, jumps, for  which RISC processors  present  better fits than DSP chips.  Finally, 
the  processed data are stored on high-speed tapes or  sent  out to a display  device. An VO 
device is responsible for  this bulk data movement. 

6. Parallel Programming Issues 

As described  in the first two parts '* 2, COTS components offer many  advantages in 
terms of  system scalability, programmability, flexibility, performance  with  respect to 
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size, weight,  power,  and  cost.  However, COTS components are not  originally  designed 
to  guarantee  optimal  performance  for a particular  application.  Hardware integration 
alone is not  sufficient to meet the performance  requirements. 

To fully exploit the use  of a heterogeneous  mix of COTS  components,  software 
programming tools such as high-level  language, efficient parallel  library, task profiling 
and  analytical  benchmarking,  task  mapping  and  scheduling,  supporting compiler and 
operating  system  mechanisms,  should  be  available  to the programmers. Currently, 
parallel  programming  techni  ue is not  advanced  enough to permit automation of task 
mapping  and  scheduling 33, . The user  must  explicitly  decompose the application  into 
appropriate subtasks, decide on which  machine to execute each subtask, code each 
subtask  specifically  for its targeted  machine,  and  determine the relative execution 
schedule  for the subtasks. However, full automation is an active research topic both in 
academia  and  industry. 
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7.1. Communication time 

In an integrated  system  which  implements  several tasks that  feed data to each other, 
each tasks takes some  amount of time that equals to the sum of 42 

0 Time  required  to  transfer the input  data  from the previous task. 
0 Time  required to process the data. 
0 Time required transfer the output  data  to  the  next  task. 

Therefore,  in addition to the processing  time,  communication time (between the 
processing  units,  between the processing  unit  and its on-chip  memory,  between the 
processing  unit  and the bulk  memory  storage) is also  needed among the tasks. 
Experience  over the years  has shown that  processor  speed is increasing at a faster rate 
than the speed increase of memory  and  interconnect  network 33 . In fact, communication 
time is the major  overhead that can  adversely  impact  scalability when mapping an 
embedded  signal  processing  application  onto a high-performance  computing  platform 39. 

There  are  two  types of data dependencies  that can affect the communication time: 
spatial  and  temporal data dependency. Spatial data  dependency is classified  into  intra- 
task  and  inter-task  dependencies. Intra-task dependency  occurs  when subtasks are 
exchanging  intermediate  results (i.e. overlap-add  and  overlap-save  convolution). Inter- 
task dependency  results  from data movement between  parallel tasks (i.e. pulse 
compression  followed by azimuth  compression). Temporal dependency arises when 
previous data set is needed  for the current  process.  Good  understanding of the data flow 
and efficient data  re-distribution  and  task  scheduling is required in order to meet the 
performance  requirement. 

7.2. Throughput and Latency 

While  other  parameters such as size, weight,  power,  and  cost  impose constraints on 
the hardwarehoftware architecture,  two of the  most  important  parameters  that  need  to  be 
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optimized  are throughput and latency . Throughput is the average  rate at which 
output  sample  leaves the system. The  system  throughput  must  keep  pace  with the input 
data  rate.  Latency is the worst-case  time  between the transform of an input  sample  and 
the delivery  of the processed  output  sample.  The  system  latency is such that all the 
processing  must  be  done  within an assigned  time. The throughputllatency optimization 
problem consists of minimizing the number of processors needed to satisfy the 
throughput  requirement  subject  to the latency constraint. Numerous research  studies 
have  been  conducted  and  several  models  have  been  proposed to help minimize  latency 
and  maximize  throughput,  for  a  given  number of processors 

39, 43 

31, 39,43 

7. Typical Software Architecture for SAR Real-Time Signal Processing 

In this section,  we  provide an example of a  typical  parallel software structure. The 
example  shown  below  represents the architecture designed  for  Mercury's RACEway 
multicomputer 42. The  process  breaks down into SETUP code  and GO code 

SETUP  Phase 
Allocate local memory 
Boot compute elements 
Spawn processes 
Create endpoints 
Create transfer requests 
Set up synchronization objects 
Set up look-up tables 

GO Phase (inner-loop functions) 
while (is - data coming?) 

Getdata in 
Process data 
Send data out 

end while 

The descriptions  of the activities are  given  below. 

7.1. SETUP Code 

Allocating local memory: to  allocate memory for function calls, to  provide  aligned 
memory  for  special  library calls, and  to  allocate  on-chip memory on certain DSP 
chips (such as  the SHARCs). 
Booting compute elements (CE): to load an executive  into the targeted CE's 
memory  and to provide the physical address of the targeted CE in a interprocess 
communication  database. 
Spawning processes: to  load an executable  image  into the targeted CE's memory. 
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Creating endpoints: to create endpoints which  include  shared  memory  buffer (SMB, 
associated  with  random-access memory) and stream endpoints (associated  with 
devices). 
Creating transfer requests: to define the  source  endpoint, the transfer engine, and 
the  destination  endpoint  for a particular transfer. Endpoints can be  SMB or devices. 
Transfer  engine  include direct memory access controller (DMA engine) and the DMA 
engine  for  external  devices. 
Setting up synchronization objects: Standard synchronization objects include: 
sockets,  semaphores,  and  signals. Sockets provide  full-duplex  message  passing 
between  processes. Semaphores are  used  for  synchronization.  And signals provide 
asynchronous  notification  to  processes. 
Setting up look-up  tables: to create  look-up  tables  for frequent used functions and 
transforms  such as trigonometric  functions  and fast Fourier  or discrete cosine 
tranforms. 

7.2. GO Codes (inner-loop processing) 

Data transfer: data movement extensively  used transfer requests previously created 
in the SETUP phase.  Data transfer can  be  between  processes,  between a process and 
a logical  device,  and  between a process and a raw  device. 
Processing data: inner-loop  processing is usually  performed  with parallel library 
functions  that  have  been  optimized  for a targeted  processor.  Input data should  reside 
in  local  memory to reduce the communication time fiom reading  external  memory. 

Summary 

In this final  part,  we  reviewed  the  standard  multicomputing  platforms  and  parallel 
programming  techniques.  We  then  compared scientific programming  and real-time 
sensor-based  processing  where a heterogeneous  system offers many advantages. We  also 
pointed  out  that  parallel  programming is not a mature  technique  and  presents  many 
challenges. The ultimate  goal is to  provide full automation  of the hardwarehoftware co- 
design.  Until this automatic tool is available, the hardware  designer  and  software 
programmer  must  explicitly  specify the task  partitioning  and  handle  all the software 
communicatiodsynchronization processes  to  ensure  low  latency  and  high  throughput  to 
meet  performance specifications. 
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